Without evidence of benefit, an intervention should not be presumed to be beneficial or safe.

- Rogue Medic

ILCOR wants the appearance of public comments with less than half the substance

 

The International Liaison Committee on Resuscitation (ILCOR) shows its priorities in the way it handles its problem with public comments.
 

Last week ILCOR posted the two new draft CoSTRs listed below for public comment. It became apparent that the commenting link was broken and those who visited the site could not comment. We apologize for the inconvenience. The commenting link is now fixed and we invite you to comment at ilcor.org/costr.

  • Advanced Airway Management During Adult Cardiac Arrest
  • Vasopressors in Adult Cardiac Arrest
  • As a reminder, the public comment period will close on 4 April 2019.[1]

     

    ILCOR made a mistake that prevented public comments from being submitted for most of the public comment period.

    ILCOR is so interested in your public comments that they have decided to send out an email to let people know that they have the same drop dead date for the comments as before, but this time they might actually be able to get the comments to work. Maybe.

    The lack of evidence of benefit of epinephrine (adrenaline in Commonwealth countries) has lasted over half a century, so what is the rush to get these new guidelines out?

    There is only one outcome that matters – survival without severe brain damage.
     


     

    ILCOR evaluates 23 outcomes.

    ILCOR considers 15 of these outcomes critical, but they are really just 5 outcomes, with some of them repeated over different rhythms. These are (in increasing order of importance to the only one that matters):

    1. For the critical outcome of survival to hospital discharge, 2. For the critical outcome of survival at 3 months, 3. For the critical outcome of favorable neurologic outcome at hospital discharge, 4. For the critical outcome of survival with unfavorable neurologic outcome at 3 months, 5. For the critical outcome of favorable neurologic outcome at 3 months,

    Many of them are repeated for each cardiac arrest rhythm or for each vasopressor, or vasopressor cocktail:

    1. Epinephrine plus vasopressin compared to epinephrine only – Any rhythm 2. Initial vasopressin compared to initial epinephrine – Any rhythm 3. Epinephrine compared to placebo – Non-shockable rhythms 4. Epinephrine compared to placebo – Shockable rhythms 5. Epinephrine compared to placebo – Any initial rhythm

    There is only one outcome that matters – survival without severe brain damage.

    There is only one study that was large enough to answer this:
     

    CONCLUSIONS
    In adults with out-of-hospital cardiac arrest, the use of epinephrine resulted in a significantly higher rate of 30-day survival than the use of placebo, but there was no significant between-group difference in the rate of a favorable neurologic outcome because more survivors had severe neurologic impairment in the epinephrine group.[2]

     

    If the people at ILCOR really think that epinephrine is beneficial in cardiac arrest, they should encourage a much larger study.

    There were 4,000 patients in each group – 4,000 placebo and 4,000 epinephrine.

    Maybe with 8,000 patients in each group, the ever decreasing “trend toward better outcome” will reach significance. Maybe it will be shown to be just another insignificant appearance of a “trend” that is the result of having so few survivors to compare.

    There were only 161 survivors without severe brain damage out of 8,000 cardiac arrest patients – 74 placebo and 87 epinephrine.

    Those resuscitated before receiving epinephrine/placebo were excluded from the study, so this is not a case of EMS that only has a 2% resuscitation rate. The focus on epinephrine is a focus on the patients least likely to be resuscitated and a focus on counterproductive outcomes.

    Almost all of our good outcomes (without severe brain damage) will be without epinephrine, because these resuscitations happen before epinephrine can be give by even the most aggressive epi enthusiast.

    What we are doing is making excuses for memorizing ineffective interventions and requiring their application is a specific way, in order to determine the quality of care. We are promoting fantasy.

    We learned that distracting from the quality of chest compressions is the most deadly thing we can do in resuscitation.

    CPR = only chest compressions – the exception is when the arrest is believed to be due to a respiratory event, such as when the Smurf sign or a respiratory/choking history is present. Chest compressions provide all of the pulmonary resuscitation that a human needs for a non-respiratory event and the respiratory events are not easily missed.

    Why require a whole bunch of skills be applied for such a tiny portion of good outcomes among cardiac arrest patients?

    Why not give up on requiring these skills when the evidence makes it clear that there is no benefit?

    All we are doing is adding cognitive load to make us feel like we are doing something special.

    We could learn something that actually benefits patients, such as how to assess patients when giving high-dose NTG (NiTroGlycerine or GTN GlycerylTriNitrate in Commonwealth countries) for even hypotensive CHF/ADHF (Congestive Heart Failure/Acute Decompensated Heart Failure), where we can make much more of a difference and prevent cardiac arrest, but we don’t.[3],[4],[5]
     


     

    Cognitive load is not just a problem for paramedics and nurses, or med/surg doctors, but also for emergency physicians:

    Cognitive Load and the Emergency Physician
    April 12, 2016
    James O’Shea
    emDocs
    Article

    Why are we distracting everyone from things that do improve the only outcome that matters, in order to promote things that do not improve any outcome that matters?

    Here is what I wrote –
     

    The primary source for the recommendation to keep things the same is a brand new study – PARAMEDIC2.

    This showed no statistically significant improvement in the only outcome that matter – survival without severe brain damage.

    A larger study might show that there is a real improvement – or it may put the epi hypothesis out of its misery.

    I will eventually have a cardiac arrest. If I am resuscitated, whom will ILCOR send to change my diaper, and attend to the other things I can no longer attend to?

    We need evidence of a significant benefit in order to justify distracting everyone from interventions that actually do improve survival without severe brain damage.

    .

     

    The commenting link is now fixed and we invite you to comment at ilcor.org/costr

    Maybe they will pay attention. Dr. Rory Spiegel of EM Nerd has a detailed comment that is also critical of ILCOR’s proposed “strong recommendation” of epinephrine.

    Footnotes:

    [1] Vasopressors in Adult Cardiac Arrest
    Time left for commenting: 11 days 15:49:49
    ILCOR staff
    Created: March 21, 2019 · Updated: March 21, 2019
    Draft for public comment
    Consensus on Science with Treatment Recommendations (CoSTR)
    Vasopressors in Adult Cardiac Arrest page for comments until April 04, 2019 at 06:00 Eastern Time

    [2] A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest.
    Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, Black JJM, Moore F, Fothergill RT, Rees N, O’Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R; PARAMEDIC2 Collaborators.
    N Engl J Med. 2018 Aug 23;379(8):711-721. doi: 10.1056/NEJMoa1806842. Epub 2018 Jul 18.
    PMID: 30021076

    Free Full Text from N Engl J Med.
     

    In a Bayesian analysis that used an assumption of no benefit from adrenaline, the posterior probability that the absolute rate of survival was at least 1 percentage point higher in the epinephrine group than in the placebo group was 37% (Fig. S3 in the Supplementary Appendix). The probability that the absolute survival rate was at least 2 percentage points higher was 0.2%. With respect to the rate of survival with a favorable neurologic outcome at hospital discharge, the probabilities that the rate was at least 1 or 2 percentage points higher with epinephrine were 1.9% and 0%, respectively (Fig. S4 in the Supplementary Appendix).

     

    The probability of a good outcome (no severe brain damage) is not improved with epinephrine.

    If we want to improve outcomes, we need to look elsewhere, because there is nothing to be gained with epi.

    [3] Intravenous nitrates in the prehospital management of acute pulmonary edema.
    Bertini G, Giglioli C, Biggeri A, Margheri M, Simonetti I, Sica ML, Russo L, Gensini G.
    Ann Emerg Med. 1997 Oct;30(4):493-9.
    PMID: 9326864 [PubMed – indexed for MEDLINE]

    [4] Unreasonable Fear of Hypotension and High-Dose NTG – Part I
    Thu, 29 Aug 2013
    Rogue Medic
    Article

    [5] Unreasonable Fear of Hypotension and High-Dose NTG – Part II
    Wed, 04 Sep 2013
    Rogue Medic
    Article

    .

    ACLS Excuses for Causing Harm with Epinephrine

     

    The next ACLS guidelines are available for review and comment, before they are finalized. The Consensus on Science with Treatment Recommendations (CoSTR) from the International Liaison Committee on Resuscitation (ILCOR) are available for two guidelines:

    Vasopressors in Adult Cardiac Arrest

    Advanced Airway Management During Adult Cardiac Arrest

    We have been using these interventions for so long, that there should be great evidence to show that benefits and harms of both interventions, but there is no good evidence to support either intervention.

    For epinephrine (adrenaline in Commonwealth countries), the most commonly used vasopressor and the only one rally being considered, there is no evidence of actual benefit – increased survival without severe brain damage.

    Nothing else matters.

    There is no valid evidence that increasing any surrogate endpoint improves survival without severe brain damage. The evidence cited by ILCOR shows that epinephrine increases the rate of severe brain damage.
     

    Intervention: Vasopressor or a combination of vasopressors provided intravenously or intraosseously during cardiopulmonary resuscitation.[1]

     

    Here are the outcomes that are supposed to indicate that the patient is better.
     

    Outcomes: Short-term survival (return of spontaneous circulation (ROSC) and survival to hospital admission), mid-term survival (survival to hospital discharge, 28 days, 30 days, or 1 month), mid-term favorable neurological outcomes (Cerebral Performance Category score of 1-2 or modified Rankin Scale 0-3 at hospital discharge, 28 days, 30 days, or 1 month) and long-term favorable and poor (modified Rankin Score 4-5) neurological outcomes (after 1 month).[1]

     

    Is ROSC an improvement?

    We aren’t supposed to ask that question. These are faulty assumption that the guidelines are based on.

    1. Doing something more is better than only doing things supported by valid evidence of improved survival without severe brain damage.

    No.

    How much harm is being caused in this rush to get a pulse back?

    We are supposed to ignore our understanding of research, look at a statistically insignificant “trend”, and extrapolate that statistically insignificant “trend” to support the prejudice that our intervention has not been harmful.

    That is not good science.

    That is not good medicine.
     

    Why aren’t there any studies large enough to show improved survival without severe brain damage for anything other than rapid defibrillation (when indicated VF/pulseless VT) and chest compressions?

    The research has only produced excuses and surrogate endpoint. Surrogate endpoints are for hypothesis generation and sales pitches to the least knowledgeable, but not for treatment guidelines.

    ILCOR has told us this before, but that was because the choice was between large doses of epinephrine and small doses of epinephrine, not between epinephrine and no epinephrine.

    The choice is the same.

    Is the more aggressive intervention helping?

    The answer is the same. No. That is not the conclusion of the evidence.
     

    CONCLUSIONS
    In adults with out-of-hospital cardiac arrest, the use of epinephrine resulted in a significantly higher rate of 30-day survival than the use of placebo, but there was no significant between-group difference in the rate of a favorable neurologic outcome because more survivors had severe neurologic impairment in the epinephrine group.[2]

     

    If the goal is a pulse with more severe brain damage, then epinephrine is the way to go.

    If the goal is increased survival without severe brain damage, we have to keep looking.

    We should limit the use of epinephrine to well controlled research until there is evidence of improvement in outcomes that matter.

    If this evidence is never found, our patients will not have been harmed by epinephrine.

    If this evidence is eventually found, it is something that should have been insisted on decades ago. We should not use wishful thinking and surrogate endpoints to justify interventions that harm patients.

    We used to stop compressions to let the medic/nurse/doctor intubate, or start an IV (IntraVenous) line.

    We knew that the tube was more important.

    We knew that the drugs given through the IV line were more important.

    The 2005 guidelines told us to continue compressions during intubation and during IV attempts and to improve the quality of the compressions.

    That focus on high quality compressions is the only time we have improved outcomes that matter.
     

    CONCLUSIONS: Compared with controls, patients with out-of-hospital cardiac arrest treated with a renewed emphasis on improved circulation during CPR had significantly higher neurologically intact hospital discharge rates.[3]

     

    33 1/3% vs 60% increased survival without severe brain damage.
     

    In 2004, we began a statewide program to advocate chest compression-only CPR for bystanders of witnessed primary OHCA. Over the next five years, we found that survival of patients with a shockable rhythm was 17.7% in those treated with standard bystander CPR (mouth-to-mouth ventilations plus chest compression) compared to 33.7% for those who received bystander chest-compression-only CPR.[4]

     

    18% vs 34% increased survival only – not increased survival without severe brain damage.
     

    In the analysis of MICR [Minimally Interrupted Cardiac Resuscitation] protocol compliance involving 2460 patients with cardiac arrest, survival was significantly better among patients who received MICR than those who did not (9.1% [60/661] vs 3.8% [69/1799]; OR, 2.7; 95% CI, 1.9-4.1), as well as patients with witnessed ventricular fibrillation (28.4% [40/141] vs 11.9% [46/387]; OR, 3.4; 95% CI, 2.0-5.8).[5]

     

    9% vs 4% increased survival only – not increased survival without severe brain damage.
     

    Neurologic outcomes were also better in the patients who received CCR (OR=6.64, 95% CI=1.31 to 32.8).[6]

     

    6 2/3 more likely to have increased survival without severe brain damage. The range is 1 1/3 to almost 33 times, because of the small numbers, but unlike epinephrine, this is statistically significant and supported by other research.

    We are still making excuses for using a drug that causes harm and does not appear to provide a benefit that is greater than the harm. If there is more benefit, it is too small to be measured, even in a study with over 9,000 patients. We do not know which patients benefit and which patients are harmed, so we do not know how to minimize the harm that we cause.

    Our patients deserve better.

    Footnotes:

    [1] Vasopressors in Adult Cardiac Arrest
    Time left for commenting: 11 days 15:49:49
    ILCOR staff
    Created: March 21, 2019 · Updated: March 21, 2019
    Draft for public comment
    Consensus on Science with Treatment Recommendations (CoSTR)
    Vasopressors in Adult Cardiac Arrest page for comments until April 04, 2019 at 06:00 Eastern Time

    [2] A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest.
    Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, Black JJM, Moore F, Fothergill RT, Rees N, O’Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R; PARAMEDIC2 Collaborators.
    N Engl J Med. 2018 Aug 23;379(8):711-721. doi: 10.1056/NEJMoa1806842. Epub 2018 Jul 18.
    PMID: 30021076

    Free Full Text from N Engl J Med.

    [3] Implementing the 2005 American Heart Association Guidelines improves outcomes after out-of-hospital cardiac arrest.
    Aufderheide TP, Yannopoulos D, Lick CJ, Myers B, Romig LA, Stothert JC, Barnard J, Vartanian L, Pilgrim AJ, Benditt DG.
    Heart Rhythm. 2010 Oct;7(10):1357-62. doi: 10.1016/j.hrthm.2010.04.022. Epub 2010 Apr 24.
    PMID: 20420938

    Free Full Text from Heart Rhythm.

    [4] The cardiocerebral resuscitation protocol for treatment of out-of-hospital primary cardiac arrest.
    Ewy GA.
    Scand J Trauma Resusc Emerg Med. 2012 Sep 15;20:65. doi: 10.1186/1757-7241-20-65. Review.
    PMID: 22980487

    Free Full Text from PubMed Central.

    [5] Minimally interrupted cardiac resuscitation by emergency medical services for out-of-hospital cardiac arrest.
    Bobrow BJ, Clark LL, Ewy GA, Chikani V, Sanders AB, Berg RA, Richman PB, Kern KB.
    JAMA. 2008 Mar 12;299(10):1158-65. doi: 10.1001/jama.299.10.1158.
    PMID: 18334691

    Free Full Text from JAMA.

    [6] Cardiocerebral resuscitation is associated with improved survival and neurologic outcome from out-of-hospital cardiac arrest in elders.
    Mosier J, Itty A, Sanders A, Mohler J, Wendel C, Poulsen J, Shellenberger J, Clark L, Bobrow B.
    Acad Emerg Med. 2010 Mar;17(3):269-75. doi: 10.1111/j.1553-2712.2010.00689.x.
    PMID: 20370759

    Free Full Text from Acad Emerg Med.

    .

    What Treatments May Be De-Emphasized by EM/EMS in 2019? Part II

     

    I showed the problems with amiodarone for both live patients and dead patients in Part I. The higher the quality of the evidence, the less the evidence supports the use of amiodarone on humans.

    Amiodarone is all sales pitch and no medical benefit, but Dr. Kudenchuk keeps trying to spin the results like an acupuncturist, when the evidence clearly does not support Dr. Kudenchuk’s claims.[1]
     

    What else should be de-emphasized?

    Obviously, adrenaline (epinephrine in non-Commonwealth countries) for cardiac arrest. As the quality of the epinephrine research has improved, the claims of supposed benefits have disappeared.[2], [3]

    Now, the goalposts have shifted, again, and the claims are that some other dosing is safe and effective, even though the evidence to support these claims does not exist. This is alternative medicine. This is dishonest. This is experimenting on patients without any kind of ethical approval, or collection of data, or anything else that would accompany a true experiment. We are learning that we are very good at lying to ourselves, but we knew that.

    Eventually, we may be claiming that we have not studied what happens when we stand on one leg while giving epinephrine.

    How can we possibly stop using adrenaline if we have not proven that it doesn’t work when standing on one leg? How can we refuse to provide this one legged hope to patients?

    We are sorry for what we did to your _______, but we consider justifying doing something harmful, based on low quality evidence and even lower quality excuses, to be more important than the outcomes of our patients. If we don’t throw in the kitchen sink, how can we claim that we did everything we could for to your _______?
     


    Click on the image to make it larger.
    I modified the original to add the outcomes reported by PARAMEDIC2. Severe neurological impairment is the wording from the conclusion, but that would not fit. If you think that harm is not an accurate synonym for impairment, you may be dangerous to patients.
    Source of original – R.E.B.E.L. EM – Beyond ACLS: Cognitively Offloading During a Cardiac Arrest
     

    If the next revision of ACLS/ILCOR (Advanced Cardiac Life Support/International Liaison Committee on Resuscitation) does not state that epinephrine/adrenaline should be limited to use in high quality research, it will be encouraging abuse of patients.

    This is alternative medicine. This is not medicine.

    The difference is that real medicine relies on valid evidence that it works, while alternative medicine relies on marketing strategies and misinformation.

    Do you want to be treated by someone who can tell the difference between these approaches?

    Medicine requires doing what is best for the patient.

    Alternative medicine requires doing what makes the guru look best, so that the guru can keep making sales.

    The doctors promoting this unethical approach do not appear to be ashamed of what they are doing, but they keep making excuses. We need to make it clear that their excuses are not ethical.

    To all of the doctors claiming that a drip works. Demonstrate that you are ethical and competent. Show that what you are doing improves outcomes that matter to patients, in a high quality study, or stop.

    If doctors won’t do that, maybe we should add DNA (Do Not Amio) and DNE (Do Not Epi) to our list of advance directives, for those who do not think that resuscitation to a come, where sepsis and aspiration pneumonia are what we aspire to.

    Footnotes:

    [1] Amiodarone, Lidocaine, or Placebo in Out-of-Hospital Cardiac Arrest.
    Kudenchuk PJ, Brown SP, Daya M, Rea T, Nichol G, Morrison LJ, Leroux B, Vaillancourt C, Wittwer L, Callaway CW, Christenson J, Egan D, Ornato JP, Weisfeldt ML, Stiell IG, Idris AH, Aufderheide TP, Dunford JV, Colella MR, Vilke GM, Brienza AM, Desvigne-Nickens P, Gray PC, Gray R, Seals N, Straight R, Dorian P; Resuscitation Outcomes Consortium Investigators.
    N Engl J Med. 2016 May 5;374(18):1711-22. doi: 10.1056/NEJMoa1514204. Epub 2016 Apr 4.
    PMID: 27043165

    Free Full Text from NEJM.

    CONCLUSIONS Overall, neither amiodarone nor lidocaine resulted in a significantly higher rate of survival or favorable neurologic outcome than the rate with placebo among patients with out-of-hospital cardiac arrest due to initial shock-refractory ventricular fibrillation or pulseless ventricular tachycardia.

     

    Here are some comments from Dr. Kudenchuk, which contradict the conclusion of Dr. Kudenchuk’s study:
     

    This trial shows that amiodarone and lidocaine offer hope for bringing patients back to life and into the hospital after cardiac arrest,” said principal study author Peter Kudenchuk, M.D.

     

    This trial shows that amiodarone and lidocaine offer no hope for outcomes that matter to patients.
     

    Importantly, there was a significant improvement in survival to hospital discharge with either drug when the cardiac arrest was bystander-witnessed.”

     

    There is no truth to Dr. Kudenchuk’s claim. This is what the authors of the study actually wrote:
     

    We observed an interaction of treatment with the witnessed status of out-of-hospital cardiac arrest, which is often taken as a surrogate for early recognition of cardiac arrest, a short interval between the patient’s collapse from cardiac arrest and the initiation of treatment, and a greater likelihood of therapeutic responsiveness. Though prespecified, this subgroup analysis was performed in the context of an insignificant difference for the overall analysis, and the P value for heterogeneity in this subgroup analysis was not adjusted for the number of subgroup comparisons. Nonetheless, the suggestion that survival was improved by drug treatment in patients with witnessed out-of-hospital cardiac arrest, without evidence of harm in those with unwitnessed arrest, merits thoughtful consideration.

     

    The best that can be stated about these drugs is that if the researchers used a large enough study, they might be able to find a statistically significant result – or the researchers may demonstrate that this was just another example of a statistically insignificant run of luck, which means nothing and is just as likely to have gone the other way.

    A run of heads in a row, while flipping a coin is a reason to examine the coin for bias, but if no bias is found, it is expected to be just what is expected to happen in a large number of coin flips. A lack of understanding of coincidence leads to faulty conclusions.

    The difference in outcomes, that Dr. Kudenchuk claims is significant, not statistically significant.

    Does Dr. Kudenchuk not understand the way research works or does Dr. Kudenchuk have some unstated motive for distorting the results? It appears that the New England Journal of Medicine refused to publish the conclusion that Dr. Kudenchuk wanted, so Dr. Kudenchuk is using more gullible people to spread his misinformation.

    Go ahead and read the full paper, which is available from NEJM here.

    Also read Dr. Kudenchuk’s press release, which misrepresents the results of Dr. Kudenchuk’s study. You would think that Dr. Kudenchuk would know better.
     

    Antiarrhythmic drugs found beneficial when used by EMS treating cardiac arrest
    NHLBI NEWS|News Release
    April 4, 2016, 9:00 AM EDT
    Press Release
     

    I have nothing to hide. I want you to look all of the evidence.
     

    Dr. Kudenchuk is Misrepresenting ALPS as ‘Significant’
    Tue, 12 Apr 2016
    Rogue Medic
    Article
     

    Amiodarone, Lidocaine, or Placebo in Out-of-Hospital Cardiac Arrest
    Mon, 04 Apr 2016
    Rogue Medic
    Article

    [2] Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial
    Jacobs IG, Finn JC, Jelinek GA, Oxer HF, Thompson PL.
    Resuscitation. 2011 Sep;82(9):1138-43. Epub 2011 Jul 2.
    PMID: 21745533 [PubMed – in process]

    Free Full Text PDF Download from semanticscholar.org
     

    This study was designed as a multicentre trial involving five ambulance services in Australia and New Zealand and was accordingly powered to detect clinically important treatment effects. Despite having obtained approvals for the study from Institutional Ethics Committees, Crown Law and Guardianship Boards, the concerns of being involved in a trial in which the unproven “standard of care” was being withheld prevented four of the five ambulance services from participating.

     

    In addition adverse press reports questioning the ethics of conducting this trial, which subsequently led to the involvement of politicians, further heightened these concerns. Despite the clearly demonstrated existence of clinical equipoise for adrenaline in cardiac arrest it remained impossible to change the decision not to participate.

     

    The results do not show an improvement in the any outcome that matters to patients.
     

    CONCLUSION: Patients receiving adrenaline during cardiac arrest had no statistically significant improvement in the primary outcome of survival to hospital discharge although there was a significantly improved likelihood of achieving ROSC.

     

    [3] A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest.
    Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, Black JJM, Moore F, Fothergill RT, Rees N, O’Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R; PARAMEDIC2 Collaborators.
    N Engl J Med. 2018 Jul 18. doi: 10.1056/NEJMoa1806842. [Epub ahead of print]
    PMID: 30021076

    Free Full Text from NEJM

    It appears that the full text of PARAMEDIC2 is no longer available for free from NEJM, but there is the option of registering for 3 free papers a month (Register for 3 FREE subscriber-only articles each month.) in a red pop-up banner at the bottom of the page.

    Once again, the results do not show an improvement in the any outcome that matters to patients.
     

    CONCLUSIONS: In adults with out-of-hospital cardiac arrest, the use of epinephrine resulted in a significantly higher rate of 30-day survival than the use of placebo, but there was no significant between-group difference in the rate of a favorable neurologic outcome because more survivors had severe neurologic impairment in the epinephrine group.

     

    .

    This Rhythm is Hilarious

     


    Click on the image to make it larger.
     

    Apparently, the second 12 lead was after 150 mg of amiodarone. The hilarity is the amiodarone.

    I received this in an email. It is reported to have been posted on Facebook, but I choose not to have access to Facebook, so I do not have any more details. I am occasionally tempted to set up an account again, but I generally prefer intentional comedy.

    Everything you need to know is in the first 12 lead.

    Things that do not matter:

    Distance to the hospital.

    Time of onset.

    Last meal.

    National Registry certification.

    Et cetera.

    .

    What Treatments May Be De-Emphasized by EM/EMS in 2019? Part I

     

    EM (Emergency Medicine) and EMS (Emergency Medical Services) have already started to eliminate/decrease use of a lot of our failed treatments, because people started to see through our excuses. Atropine for asystole stuck around for a long time, then just vanished.[1]. Calcium for cardiac arrest is also something that used to be standard of care, then we raised our standards.

    We need to keep raising our standards, because our patients’ outcomes – their lives, their brains, their everything – depend on raising our standards.

    We used to give antiarrhythmics to almost anyone with a cardiac complaint. Then there was CAST (The Cardiac Arrhythmia Suppression Trial[2]). While CAST did not study lidocaine, it did study longer term use of antiarrhythmics. Lidocaine is too dangerous for long term use, so the results of CAST may be much worse for lidocaine. We thought that the increased deaths among patients with frequent PVCs (Premature Ventricular Contractions) after having a heart attack was due to a problem with the conduction system. PVCs indicate a problem with conduction and antiarrhythmics cause the PVCs to go away.
     

    Before receiving the antiarrhythmic (PVCs are circled in red).


     

    After receiving the antiarrhythmic.


     

    Problem solved.

    Now the problem is, How do we get paid more? These drugs were the biggest selling drugs at the time. They making the drug companies a fortune. Whichever company made the drug that saved the most lives would make a lot more money then the others. Provide evidence that ______ saves more lives than all of the others.

    The problem of the PVCs was solved, but the solution was killing many more patients than not giving drugs.

    The result was not celebrated by the drug companies. The patients taking antiarrhythmics were dying at three times the rate of the patients taking placebos. A plausible physiological mechanism suggested the drugs would save lives, but that was based on an assumption that was not justified. This is the kind of reasoning that appeals to those who reject EBM (Evidence-Based Medicine). The evidence should convince these EBM opponents of the folly of relying on physiology and on a plausible explanation to justify not looking for the evidence that might expose their unreasonable assumptions. These otherwise reasonable people start making excuses for unreasonable assumptions, because they believe. They seem to need to convince others to join in and multiply their mistakes.[3]

    The PVCs appear to have been just an indicator of an unhealthy heart.

    Getting rid of the PVCs may have made the conduction in the heart less healthy.

    Giving the drugs may have killed tens of thousands of patients.

    Antiarrhythmic use decreased dramatically after the harm demonstrated in CAST, but some drug pushers are trying to get one of the worst antiarrhythmics (amiodarone, now in a new formula) to make a comeback, by creatively spinning research to claim results the research was never designed to evaluate.

    Not having learned from the evidence, even though he has been the lead author on some of it, Dr. Peter Kudenchuk has been claiming that in EMS witnessed arrests, there was a significant improvement, even though his own published results contradict this claim. Here is what the results actually state:
     

    Though prespecified, this subgroup analysis was performed in the context of an insignificant difference for the overall analysis, and the P value for heterogeneity in this subgroup analysis was not adjusted for the number of subgroup comparisons. Nonetheless, the suggestion that survival was improved by drug treatment in patients with witnessed out-of-hospital cardiac arrest, without evidence of harm in those with unwitnessed arrest, merits thoughtful consideration.[4]

     

    Amiodarone has also been shown to be horrible for patients with ventricular tachycardia with a pulse. Amiodarone is so ineffective, that the rate of severe side effects is greater than the rate of improved outcomes. Amiodarone is more likely to make your patient’s medical condition much worse, but it is still considered to be the standard of care and amiodarone is still in EMS protocols.[5]

    Maybe amiodarone can produce better results if it is used for execution by lethal injection.

    I am expecting that there will be more failed treatments removed from our standards of care.

    We need to raise our standards to improve outcomes, not lower our standards to make us look better than we are.

    Continued in Part II. I will add Part III and others at some point and provide the links here.

    Footnotes:

    [1] Why Did We Remove Atropine From ACLS?
    Rogue Medic

    Part I
    Sun, 13 Oct 2013

    Part II
    Wed, 16 Oct 2013

    [2] Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial.
    Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL, et al.
    N Engl J Med. 1991 Mar 21;324(12):781-8.
    PMID: 1900101 [PubMed – indexed for MEDLINE]

    Free Full Text from NEJM.
     

    CONCLUSIONS. There was an excess of deaths due to arrhythmia and deaths due to shock after acute recurrent myocardial infarction in patients treated with encainide or flecainide. Nonlethal events, however, were equally distributed between the active-drug and placebo groups. The mechanisms underlying the excess mortality during treatment with encainide or flecainide remain unknown.

    [3] Why US EMS will never get to sit at the adult table – The Appeal to Authority
    Sun, 04 May 2014
    Rogue Medic
    Article

    Since Mike cites the original parachute study, as if it is not satire, it is amusing to point out that there is a new Parachute Study! Read Dr. Radecki’s description of this satirical poke at those who do not understand research in the satire issue of the BMJ, which they put out every Christmas as sort of a British IgNobel.

    Don’t Bother With the Parachute!
    Emergency Medicine Literature of Note
    Dr. Ryan Radecki
    December 21, 2018
    Article
     

    Parachute use to prevent death and major trauma when jumping from aircraft: randomized controlled trial.
    Yeh RW, Valsdottir LR, Yeh MW, Shen C, Kramer DB, Strom JB, Secemsky EA, Healy JL, Domeier RM, Kazi DS, Nallamothu BK; PARACHUTE Investigators.
    BMJ. 2018 Dec 13;363:k5094. doi: 10.1136/bmj.k5094. Erratum in: BMJ. 2018 Dec 18;363:k5343.
    PMID: 30545967

    Free Full Text from BMJ.

    [4] Amiodarone, Lidocaine, or Placebo in Out-of-Hospital Cardiac Arrest.
    Kudenchuk PJ, Brown SP, Daya M, Rea T, Nichol G, Morrison LJ, Leroux B, Vaillancourt C, Wittwer L, Callaway CW, Christenson J, Egan D, Ornato JP, Weisfeldt ML, Stiell IG, Idris AH, Aufderheide TP, Dunford JV, Colella MR, Vilke GM, Brienza AM, Desvigne-Nickens P, Gray PC, Gray R, Seals N, Straight R, Dorian P; Resuscitation Outcomes Consortium Investigators.
    N Engl J Med. 2016 May 5;374(18):1711-22. doi: 10.1056/NEJMoa1514204. Epub 2016 Apr 4.
    PMID: 27043165

    Free Full Text from NEJM.

    CONCLUSIONS Overall, neither amiodarone nor lidocaine resulted in a significantly higher rate of survival or favorable neurologic outcome than the rate with placebo among patients with out-of-hospital cardiac arrest due to initial shock-refractory ventricular fibrillation or pulseless ventricular tachycardia.

     

    Dr. Kudenchuk is Misrepresenting ALPS as ‘Significant’
    Tue, 12 Apr 2016
    Rogue Medic
    Article
     

    Amiodarone, Lidocaine, or Placebo in Out-of-Hospital Cardiac Arrest
    Mon, 04 Apr 2016
    Rogue Medic
    Article

    [5] The PROCAMIO Trial – IV Procainamide vs IV Amiodarone for the Acute Treatment of Stable Wide Complex Tachycardia
    Rogue Medic
    Wed, 17 Aug 2016
    Article
     

    Randomized comparison of intravenous procainamide vs. intravenous amiodarone for the acute treatment of tolerated wide QRS tachycardia: the PROCAMIO study.
    Ortiz M, Martín A, Arribas F, Coll-Vinent B, Del Arco C, Peinado R, Almendral J; PROCAMIO Study Investigators.
    Eur Heart J. 2016 Jun 28. pii: ehw230. [Epub ahead of print]
    PMID: 27354046

    Free Full Text from European Heart Journal.
     

    Amiodarone or procainamide for the termination of sustained stable ventricular tachycardia: an historical multicenter comparison.
    Marill KA, deSouza IS, Nishijima DK, Senecal EL, Setnik GS, Stair TO, Ruskin JN, Ellinor PT.
    Acad Emerg Med. 2010 Mar;17(3):297-306.
    PMID: 20370763 [PubMed – indexed for MEDLINE]

    Free Full Text from Academic Emergency Medicine.
     

    Amiodarone is poorly effective for the acute termination of ventricular tachycardia.
    Marill KA, deSouza IS, Nishijima DK, Stair TO, Setnik GS, Ruskin JN.
    Ann Emerg Med. 2006 Mar;47(3):217-24. Epub 2005 Nov 21.
    PMID: 16492484 [PubMed – indexed for MEDLINE]
     

    Intravenous amiodarone for the pharmacological termination of haemodynamically-tolerated sustained ventricular tachycardia: is bolus dose amiodarone an appropriate first-line treatment?
    Tomlinson DR, Cherian P, Betts TR, Bashir Y.
    Emerg Med J. 2008 Jan;25(1):15-8.
    PMID: 18156531 [PubMed – indexed for MEDLINE]
     

    Effects of intravenous amiodarone on ventricular refractoriness, intraventricular conduction, and ventricular tachycardia induction.
    Kułakowski P, Karczmarewicz S, Karpiński G, Soszyńska M, Ceremuzyński L.
    Europace. 2000 Jul;2(3):207-15.
    PMID: 11227590 [PubMed – indexed for MEDLINE]

    Free Full Text PDF + HTML from Europace
     

    Adenosine for wide-complex tachycardia – diagnostic?
    Thu, 23 Aug 2012
    Rogue Medic
    Article
     

    Low doses of intravenous epinephrine for refractory sustained monomorphic ventricular tachycardia.
    Bonny A, De Sisti A, Márquez MF, Megbemado R, Hidden-Lucet F, Fontaine G.
    World J Cardiol. 2012 Oct 26;4(10):296-301. doi: 10.4330/wjc.v4.i10.296.
    PMID: 23110246 [PubMed]

    Free Full Text from PubMed Central.

    .

    The Grinch Who Stole Reality

     

    And the Grinch, with his Grinch-feet ice cold in the snow, stood puzzling and puzzling, how could it be so?

    It came without ribbons epi.

    It came without tags amio.

    It came without packages oxygen, boxes tubes or bags.

    And he puzzled and puzzled ’till his puzzler was sore. Then the Grinch thought of something he hadn’t before.

    Maybe Christmas living, he thought…doesn’t come from a store drug.

    Maybe Christmas living, perhaps…means a little bit more!

     

    With apologies to Dr. Seuss (Theodore Geisel) for the modification of his parable.

    There are important differences between the minimal criteria for life and the criteria for a meaningful life. Many of us don’t like to think about that, because many of us don’t like thinking. Thinking can be hard. Making excuses for not thinking – priceless (at least, as long as you don’t think about it).

    We have been focusing on the least honest way of reporting outcomes – a pulse – Oooh!, or maybe even 30 days of a pulse – Oood-Ahhh! After all, reality does not support continuing to do what we have been doing. If we admit that we have been causing harm, then we may have to take responsibility for our actions.

    We do not want to take responsibility for our actions. We were only following orders.

    Doctors, PAs (Physician Assistants), NPs (Nurse Practitioners), nurses, paramedics, EMTs, techs, . . . do not want to take responsibility for what we get paid for. Accountability is for people who think – not for us.

    We have blamed science/evidence for requiring that we confront reality. As explained by Dr. Seuss, we want simple answers that do not require understanding. Give us algorithms to mindlessly follow. Give us mnemonics.

    We have been giving epinephrine (adrenaline in Commonwealth countries) for over half a century with no evidence of safety or improvement in the outcome that matters most.

    Why?

    We haven’t wanted to know.

    The first study to look at the effect of placebo vs. epinephrine on neurological survival was cut short – with only a tiny fraction of what would be needed to produce any kind of statistically useful information, except for some of the true believers, who made the same kinds of mistakes that have been made for other discarded treatments – treatments discarded due to failure to work, discarded due to harm, or discarded due to both.

    Don’t study this. Just believe. Belief makes us feel good. Attack science for encouraging understanding.
     

    This study was designed as a multicentre trial involving five ambulance services in Australia and New Zealand and was accordingly powered to detect clinically important treatment effects. Despite having obtained approvals for the study from Institutional Ethics Committees, Crown Law and Guardianship Boards, the concerns of being involved in a trial in which the unproven “standard of care” was being withheld prevented four of the five ambulance services from participating.[1]

     

    In addition adverse press reports questioning the ethics of conducting this trial, which subsequently led to the involvement of politicians, further heightened these concerns. Despite the clearly demonstrated existence of clinical equipoise for adrenaline in cardiac arrest it remained impossible to change the decision not to participate.[1]

     

    What was the conclusion produced by the Jacobs study?
     

    CONCLUSION: Patients receiving adrenaline during cardiac arrest had no statistically significant improvement in the primary outcome of survival to hospital discharge although there was a significantly improved likelihood of achieving ROSC.[1]

     

    As the homeopaths put their spin on studies that do not really support their claims, people who do not understand science put similar spin on the results of this. For example, if you take a Bayesian approach[2], but distort it to mean that you give extra weight to everything that supports your belief and take away credit from everything else, you can claim that this is an example of science proving that epinephrine works.

    Another way of doing this is to claim that you don’t give the 1 mg dose of epinephrine, therefore the study does not apply to your patients. After all, you are just engaging in a poorly documented, unapproved study, which allows you to think of the survivors as examples of the drug working and make excuses for the rest. Of course, if you don’t give the 1 mg dose of epinephrine, is there any evidence that your treatment is safe or effective? No.

    Rather than insisting that this method of dosing patients be studied, in order to determine if it really is safe or if it really is effective at anything other than getting a pulse in a brain-dead body, claim to be ahead of the science.

    Why find out what is really best for the patients, when there are so many ways of declaring victory and running away?

    In 2018, we had the results of the next study of placebo vs. adrenaline (epinephrine in non-Commonwealth countries, but only Commonwealth countries have bothered to do the research). The conclusion was the same as the conclusion for the only previous study.
     

    CONCLUSIONS: In adults with out-of-hospital cardiac arrest, the use of epinephrine resulted in a significantly higher rate of 30-day survival than the use of placebo, but there was no significant between-group difference in the rate of a favorable neurologic outcome because more survivors had severe neurologic impairment in the epinephrine group.[3]

     

    Has anyone else stated that the use of epinephrine should be limited to controlled trials?

    Not that I know of.

    Everyone else seems to be claiming that giving smaller boluses of epinephrine. or giving titrated infusions of epinephrine is different. Some claim that it is nihilism to refuse to believe in their slightly different treatment – at least until there is undeniable evidence of lack of benefit, or undeniable evidence of harm, or both.

    Requiring evidence of benefit, before using a treatment on a patient is being reasonable.

    Using inadequately studied treatments on people when they are at their most vulnerable is not good medicine.

    A doctor’s oath to Apollo does not include a requirement to perpetuate dogma, but medicine is only slowly starting to focus on what is best for patients, rather than what is best for appearances.

    Dr. Ryan Jacobsen addressed a similar dogma, when he got rid of the long spine board in the system where he was medical director. His description of the evidence applies to epinephrine (bolus, mini-bolus, infusion, patch, inhaler, down the tube, oral, whatever) –

    Other than historical dogma and institutional EMS medical culture we can find no evidence-based reason to continue to use the Long Spine board epinephrine as it currently exists in practice today.[4]

    I changed EMS to medical and the Long Spine board to epinephrine.

    We have good evidence that if your loved one is a laboratory pig, rat, dog, . . . we can kill them and get them back neurologically intact with epinephrine – and with other treatments that have been discarded because they do not have the same effect on humans as on lab animals.

    Let us treat your loved ones like the lab animals we think they are.

    Don’t use EBM (Evidence-Based Medicine), because belief is more important than reality.

    The world is a comedy to those that think; a tragedy to those that feel. – Horace Walpole.

    Keep thinking. Keep demanding evidence. After the nonsense being preached by the believers is exposed, we can improve the outcomes for our patients, because medicine is about doing what is best for the patient, and not about protecting the dogma.

    Footnotes:

    [1] Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial
    Jacobs IG, Finn JC, Jelinek GA, Oxer HF, Thompson PL.
    Resuscitation. 2011 Sep;82(9):1138-43. doi: 10.1016/j.resuscitation.2011.06.029. Epub 2011 Jul 2.
    PMID: 21745533

    Free Full Text PDF Download from semanticscholar.org

    [2] Bayesian inference
    Wikipedia
    Article

    [3] A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest.
    Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, Black JJM, Moore F, Fothergill RT, Rees N, O’Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R; PARAMEDIC2 Collaborators.
    N Engl J Med. 2018 Aug 23;379(8):711-721. doi: 10.1056/NEJMoa1806842. Epub 2018 Jul 18.
    PMID: 30021076

    [4] Johnson County EMS System Spinal Restriction Protocol 2014
    Ryan C. Jacobsen MD, EMT-P, Johnson County EMS System Medical Director
    Jacob Ruthsrom MD, Deputy EMS Medical Director
    Theodore Barnett MD, Chair, Johnson County Medical Society EMS Physicians Committee
    Johnson County EMS System Spinal Restriction Protocol 2014 in PDF format.

    .

    Variation in Survival After Out-of-Hospital Cardiac Arrest Between Emergency Medical Services Agencies – Part I

     

    This is a look at the data from the paper I wrote about in Are We Killing Patients With Parochialism?

    What differences can we see among the EMS agencies being studied?
     


     

    The best half of EMS agencies are producing twice as many good outcomes as the worse half of EMS agencies.[1]

    Most of us are bad at resuscitation and those of us treating the most cardiac arrests are doing the least good.

    Why do so many of us refuse to improve our standards?

    What is so much more important than patient outcomes?
     

    Let’s start with Figure 2 C How is survival to the emergency department distributed among EMS agencies?
     


     

    ROSC to the ED (Emergency Department) looks great. The results are skewed to the right, which is what we want to see in outcomes. Unfortunately, this is not an outcome that is important. Yes, you do need to have ROSC (Return Of Spontaneous Circulation) to survive, but it is important that we not cause irreversible harm in order to get very reversible ROSC.

    How reversible is ROSC?
     


     

    Those distributions are similar, although they are decreased by more than half. If leaving the hospital with a pulse were the outcome that mattered, it might not be so bad.

    But these are not on the same scale. The ROSC to the ED figure continues to 46%, with a greater than symbol to indicate that some will do better, while the survival to discharge figure stops at 20%, with the same greater than symbol to indicate that there are some beyond that number. How many beyond the end of the figure? The authors decided that it was not enough to waste space on, because they cut it off there.

    Where would the survival to discharge percentages be on the ROSC to the ED figure?
     


     

    The arrow on the right is where the 46>% bar from the ROSC to the ED figure.

    It is important to put these percentages in perspective, which means looking at the differences in the numbers at the bottom.

    Now we need to look at the percentage surviving with enough brain function to be able to take care of themselves – those probably not going to a nursing home. This is the group everyone wants to be in. Figure 2 B.
     


     

    The percentages of patients able to care from themselves looks a lot different from the previous figures. The results are skewed to the left, which is not what we want to see. Skewed to the left means that the outcomes are mostly on the lower end of the scale – the bad end.

    The percentages on the bottom of the figure have not been changed (from those used for survival to discharge), but the results have worsened (been skewed to the left).
     


     

    Compared with the first image, this is a very different outcome. We should admit that ROSC to the ED and survival with the ability to take care of ourselves are very poorly correlated.

    We need to stop focusing on the harmful distraction that is ROSC.

    Most people consider healthy brain function to be important. There are people who insist that we give too much attention to the chemistry of brain function, as if changing a person’s brain does not change a person’s behavior. When our brain chemistry changes, we change. Similarly, when our brains are damaged, as often happens during resuscitation, the part of us that makes us the people that we are is damaged. We do not think with our hearts, nor with our guts, no matter what metaphors some of us like to use.

    We are not good at resuscitating the part of the patient that matters the most to the patient.

    We are not good at producing the outcome that matters the most to the patient.

    We appear to be best at focusing on what matters the least.
     

    If we could get the half of the EMS agencies that are not effective at producing survival with good neurological function to improve their patient care, that would result in a big increase in outcomes that matter to patients.
     

    It is important that we not cause irreversible harm in order to get very reversible ROSC.
     

    Also to be posted on ResearchBlogging.org when they relaunch the site.

    In Part II I will look at the potentially significant differences between EMS agencies with good outcomes and EMS agencies with bad outcomes.

    Footnotes:

    [1] Variation in Survival After Out-of-Hospital Cardiac Arrest Between Emergency Medical Services Agencies.
    Okubo M, Schmicker RH, Wallace DJ, Idris AH, Nichol G, Austin MA, Grunau B, Wittwer LK, Richmond N, Morrison LJ, Kurz MC, Cheskes S, Kudenchuk PJ, Zive DM, Aufderheide TP, Wang HE, Herren H, Vaillancourt C, Davis DP, Vilke GM, Scheuermeyer FX, Weisfeldt ML, Elmer J, Colella R, Callaway CW; Resuscitation Outcomes Consortium Investigators.
    JAMA Cardiol. 2018 Sep 26. doi: 10.1001/jamacardio.2018.3037. [Epub ahead of print]
    PMID: 30267053

    Free Full Text from JAMA Cardiology

    .

    Are We Killing Patients With Parochialism?

     
    The variation in approaches to resuscitation in EMS is tremendous.

    Many excuses center around the need for local people to be able to claim that they know something that the evidence does not show, although they consistently fail to provide valid evidence for these claims. This local knowledge appears to be intuitive – they just know it, but cannot provide anything to support their feelings.

    The latest research can be interpreted in many different ways, but it definitely does not support the claims of the advocates of parochialism.
     

    Results We identified 43 656 patients with OHCA treated by 112 EMS agencies. At EMS agency level, we observed large variations in survival to hospital discharge (range, 0%-28.9%; unadjusted MOR, 1.43 [95% CI, 1.34-1.54]), return of spontaneous circulation on emergency department arrival (range, 9.0%-57.1%; unadjusted MOR, 1.53 [95% CI, 1.43-1.65]), and favorable functional outcome (range, 0%-20.4%; unadjusted MOR, 1.54 [95% CI, 1.40-1.73]).[1]

     

    MOR = Median Odds Ratio – how many times more likely is something to happen.

    What is most commonly measured is what matters the least – ROSC (Return Of Spontaneous Circulation). Did we get a pulse back, for even the briefest period of time, regardless of outcomes that matter.

    What matters? Does the person wake up and have the ability to function as they did before the cardiac arrest.

    Those who justify focusing on ROSC claim that, If we don’t get a pulse back, nothing else matters, but that is the kind of excuse used by frauds. How we get a pulse back does matter. The evidence makes that conclusion irrefutable, but there will always be those who do not accept that they are causing harm. They will make excuses for the harm they are causing. Getting ROSC helps them to feel that they are not causing harm. ROSC encourages us to give drugs like epinephrine, which have been demonstrated to not improve any survival that matters.

    The means of obtaining ROSC can be compared to the means of doing anything that requires finesse. Sure, it feels good to try to force something. Sure, you can claim that forcing something is the most direct way to accomplish the goal.

    Can the advocates of focusing on ROSC produce any valid evidence that their approach leads to improvements in outcomes that matter? No. The evidence contradicts their claims. The evidence has caused us to eliminate many of their treatments – treatments they claimed had to work because of physiology. As it turns out, they were wrong. They were wrong about their treatments and wrong about their understanding of physiology.

    If you want to win money, bet that any new treatment will not improve outcomes that matter.
     

    This variation persisted despite adjustment for patient-level and EMS agency–level factors known to be associated with outcomes (adjusted MOR for survival 1.56 [95% CI 1.44-1.73]; adjusted MOR for return of spontaneous circulation at emergency department arrival, 1.50 [95% CI, 1.41-1.62]; adjusted MOR for functionally favorable survival, 1.53 [95% CI, 1.37-1.78]).[1]

     

    Is presence of a pulse upon arrival at the emergency department an important outcome? Only for billing purposes. The presence of a pulse justifies providing more, and more expensive, treatments. Is the presence of a pulse upon arrival at the emergency department a goal worth trying for? As with ROSC, only if it does not cause us to harm patients to obtain this goal, which is just something that is documented, because it is a point of transfer of patient care.
     

    After restricting analysis to those who survived more than 60 minutes after hospital arrival and including hospital treatment characteristics, the variation persisted (adjusted MOR for survival, 1.49 [95% CI, 1.36-1.69]; adjusted MOR for functionally favorable survival, 1.34 [95% CI, 1.20-1.59]).[1]

     

    There is a lot of variability.

    What did they find?
     


     

    Most of the people in EMS, who claim to be doing what is best for their patients, are making things worse.
     

    69% means that there are two EMS agencies producing bad outcomes for every EMS agency producing good outcomes.

    Correction – The text crossed out is not accurate. I should have thought that through a bit better before I posted it. My caption for Table 1 is accurate. However, what I should have written afterward is –

    The worse half of EMS agencies are only producing half as many good outcomes as the better half of EMS agencies.

    We are bad at resuscitation and those doing the most resuscitating are doing the least good.

    Why do so many of us refuse to improve our standards?

    What is more important than the outcomes for our patients?
     

    Why are we so overwhelmingly bad at resuscitation?
     

    What are the authors’ conclusions?
     

    This study has implications for improvement of OHCA management. First, the analysis indicates that the highest-performing EMS agencies had more layperson interventions and more EMS personnel on scene.[1]

     

    They do not conclude that we need more doctors, more nurses, or more paramedics responding to cardiac arrest.
     

    Second, our findings justify further efforts to identify potentially modifiable factors that may explain this residual variation in outcomes and could be targets of public health interventions.[1]

     

    We need to figure out what we are doing, because the people telling us that they know that we need intubation are lying.

    We need to figure out what we are doing, because the people telling us that they know that we need epinephrine are lying.

    We need to figure out what we are doing, because the people telling us that they know that we need amiodarone are lying.

    We need to figure out what we are doing, because the people telling us that they know that we need ________ are lying.

    How dare I call them liars?

    Let them produce valid evidence that the interventions they claim are necessary actually do improve outcomes that matter.

    Have them stop making excuses and start producing results.

    I dare them.

    The only time we have made significant improvements in outcomes have been when we emphasized chest compressions, especially bystander chest compressions, and when we emphasized bystander defibrillation.

    It is time to start requiring evidence of benefit for everything we do to patients.

    Our patients are too important to be subjected to witchcraft, based on opinions and an absence of research.

    There is plenty of valid evidence that using only chest compressions improves outcomes.
     

    Cardiocerebral resuscitation improves survival of patients with out-of-hospital cardiac arrest.
    Kellum MJ, Kennedy KW, Ewy GA.
    Am J Med. 2006 Apr;119(4):335-40.
    PMID: 16564776 [PubMed – indexed for MEDLINE]

    Cardiocerebral resuscitation improves neurologically intact survival of patients with out-of-hospital cardiac arrest.
    Kellum MJ, Kennedy KW, Barney R, Keilhauer FA, Bellino M, Zuercher M, Ewy GA.
    Ann Emerg Med. 2008 Sep;52(3):244-52. Epub 2008 Mar 28.
    PMID: 18374452 [PubMed – indexed for MEDLINE]

    Minimally interrupted cardiac resuscitation by emergency medical services for out-of-hospital cardiac arrest.
    Bobrow BJ, Clark LL, Ewy GA, Chikani V, Sanders AB, Berg RA, Richman PB, Kern KB.
    JAMA. 2008 Mar 12;299(10):1158-65.
    PMID: 18334691 [PubMed – indexed for MEDLINE]

    Free Full Text at JAMA

    Passive oxygen insufflation is superior to bag-valve-mask ventilation for witnessed ventricular fibrillation out-of-hospital cardiac arrest.
    Bobrow BJ, Ewy GA, Clark L, Chikani V, Berg RA, Sanders AB, Vadeboncoeur TF, Hilwig RW, Kern KB.
    Ann Emerg Med. 2009 Nov;54(5):656-662.e1. Epub 2009 Aug 6.
    PMID: 19660833 [PubMed – indexed for MEDLINE]

    And more.

     

    It is not ethical to insist on giving treatments to patients in the absence of valid evidence of benefit to the patient. We need to begin to improve our ethics.
     

    Also to be posted on ResearchBlogging.org when they relaunch the site.

    Footnotes:

    [1] Variation in Survival After Out-of-Hospital Cardiac Arrest Between Emergency Medical Services Agencies.
    Okubo M, Schmicker RH, Wallace DJ, Idris AH, Nichol G, Austin MA, Grunau B, Wittwer LK, Richmond N, Morrison LJ, Kurz MC, Cheskes S, Kudenchuk PJ, Zive DM, Aufderheide TP, Wang HE, Herren H, Vaillancourt C, Davis DP, Vilke GM, Scheuermeyer FX, Weisfeldt ML, Elmer J, Colella R, Callaway CW; Resuscitation Outcomes Consortium Investigators.
    JAMA Cardiol. 2018 Sep 26. doi: 10.1001/jamacardio.2018.3037. [Epub ahead of print]
    PMID: 30267053

    Free Full Text from JAMA Cardiology

    .